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Experimental studies of the influence of distributed power losses on the transparency
of two-dimensional surface photonic band-gap structures

I. V. Konoplev,* A. D. R. Phelps, A. W. Cross, and K. Ronald
Department of Physics, University of Strathclyde, Glasgow, G4 0NG, United Kingdom

~Received 29 October 2002; revised manuscript received 11 July 2003; published 30 December 2003!

Two-dimensional~2D! surface photonic band-gap~SPBG! structures have been suggested to realize 2D
distributed feedback. The 2D SPBG structures can be obtained by providing 2D periodic perturbations of the
waveguide surface. Such a structure can be used in a wide variety of applications including microwave
electronics and integrated optics. The theoretically predicted effect of the transparency of the 2D SPBG
structure when distributed Ohmic losses inside the structure are relatively high in comparison with the wave
coupling coefficient has been observed in a series of experiments. The results obtained are in good agreement
with theoretical predictions.
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I. INTRODUCTION

Two-dimensional ~2D! Bragg structures have recent
been under intensive theoretical@1–3# and experimenta
@4–6# study. These structures have been proposed for ap
cation in high-power microwave electronics@1# but can also
be used in integrated optics@7,8#. It is well known and
widely accepted that Bragg structures belong to the br
family of photonic band-gap~PBG! structures which are usu
ally defined as periodic structures used to suppress the tr
mission of electromagnetic waves within a certain freque
range. The suppression of the transmission of the elec
magnetic waves within a specific frequency range takes p
mainly due to Bragg resonance scattering of the wave in
the PBG crystal. Let us note that there are many other c
mon features between conventional PBG and Bragg st
tures used in microwave science and optics. These inc
both possessing a forbidden band gap located around
Bragg resonance frequency, and being distributed in na
with the suppression of the transmission dependence o
‘‘volume’’ effect that exists due to resonant wave scatter
on a periodic perturbation. Also the width of the forbidd
band gap strongly depends on the ‘‘contrast’’ of the pert
bation with respect to the unperturbed media, which in
case of Bragg structures corresponds to the amplitude o
corrugation. The main difference between the Bragg str
tures and conventional PBG crystals is that for a Bragg st
ture the periodicity is usually located on the wall of the gu
ing medium as opposed to a PBG, which is in the form o
periodic honeycomb volumelike material. It is therefo
thought appropriate to differentiate the two by the use of
word ‘‘surface.’’ Further, we will refer to the Bragg structur
studied as a surface photonic band-gap~SPBG! structure.
This difference underlines the two limits of the application
the 2D model, where in a conventional 2D PBG crystal
length of perturbations is much larger than the operat
wavelength~a conventional 2D PBG is often in the form of
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structure made up of long rods!, i.e., there is a very strong
contrast between the perturbed and unperturbed media. In
Bragg structure studied in this paper the amplitude of
perturbations is small in comparison with the operati
wavelength~periodic corrugations in the case presented!, i.e.,
the system can be considered as a low ‘‘contrast’’ mediu
This allows perturbation theory to be used, which leads
coupled-wave equations for specific modes propagating
the structure, while for the case of a strong contrast struc
this approach will not work and the development of mo
complex theory in terms of Floquet-Bloch waves is require
Also, to the best of our knowledge, conventional PBG cr
tals are investigated in order to obtain a broad band gap
wave propagation resulting in unusual waveguide structu
In contrast, our goal is to obtain a narrowband highly sel
tive, highly reflective mirror, which can also be used to o
tain multidimensional distributed feedback and is a poss
substitute for 1D Bragg structures which are used succ
fully in integrated optics and quantum oscillators.

The 2D SPBG structures studied in this paper can be
tained by providing 2D periodic corrugation of the wav
guide surface or by lining the waveguide with a material th
has a double periodicity of refractive index@8,9#. A sche-
matic diagram of structures of coaxial geometry with pe
odic perturbation on the outer surface of the inner conduc
is shown in Fig. 1. The black and white areas in the figu
may either correspond to the recesses and untouched su
of the waveguide, or indicate the regions of high and lo
refractive indexn of the lining material. It is important to
note that similar 2D periodic planar structures have be
considered~see, for example,@10–12#! to study the propaga
tion of the slow surface waves~surface plasmon polaritons!.
Due to their nature the surface waves possess high Oh
losses@11# but can be useful for signal processing in int
grated optics and surface studies. Also, most of the energ
the surface wave is concentrated near the guiding sur
~metal-dielectric interface! @12,13#, which complicates the
use of such waves for active high-power devices such
amplifiers and oscillators. In this work we study fast wav
guide modes with relatively low Ohmic losses inside t
waveguide and energy distributed between the wavegui
conductors. Such waves are attractive for application in
©2003 The American Physical Society13-1
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tics communication, integrated optics, and use in high-po
active devices.

The 2D periodic corrugation considered provides a
wave scattering such that counter propagating waves
coupled indirectly@Fig. 2~a!#, unlike the 1D scattering. This
allows the formation of a 2D feedback circle, which ensu
mode selection over longitudinal and transverse wave ind
as well as synchronization of radiation from the differe
parts of the oversized active medium. Computer simulati
have shown that the additional fluxes of electromagnetic
diation result in synchronization of radiation from differe
parts of a grossly oversized@in the transverse dimension~up
to 103 times of the operating wavelength!# active medium
@1–3#. In recent studies@5,6# the existence of 2D scatterin
was demonstrated and operation of a free electron mase
ing a structure of planar geometry was reported@14#.

The correlation between the wave absorption inside c
ventional PBG structures and wave transmission thro
such structures has recently been under investigation~see,
for example,@15–18#!. This issue is important because th
losses inside the PBG structure may significantly affect
field evolution and therefore its performance. This pape
dedicated to an experimental study of the influence of
distributed power losses on the 2D SPBG structure trans
ency. In Sec. II a model and results obtained from a theo
ical study of a structure with distributed power losses
discussed. In Sec. III the experimental setup and cold mi
wave measurements of such structures are presented. To
clude, we compare the experimental results with the theo
ical predictions and discuss the possibility of using t
phenomenon observed in high-power electronics and i
grated optics.

II. MODEL AND THEORETICAL STUDY OF IDEAL
COAXIAL 2D SPBG STRUCTURE

A coaxial ideal 2D structure consists of two conductors
radii r in ,r out, length l z , and having a small depth corruga
tion in the form

FIG. 1. Schematic diagram of 2D coaxial SPBG structure w
corrugated inner and smooth outer conductors. The absorbing
terial painted on the inner surface of the outer conductor is in
cated by gray shading.
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a5a1 cos~ k̄zz!cos~m̄w!, ~1!

wherea1 is the corrugation depth,k̄z52p/dz , dz is the pe-
riod of the corrugation over thez coordinate, andm̄ is the
number of variations of the corrugation over the azimut
coordinate@1–3#. We assume that the radiir in ,r out greatly
exceed the distance between the conductorsa05r out2r in and
the radiation wavelength:

a-
i-

FIG. 2. ~a! Schematic diagram of a two-dimensional distribut
feedback loop realized on an ideal 2D corrugation. The snapsho
the profiles of the field componentsBw ~b! andBz ~c! in the middle
cross section of the 2D SPBG structure correspond to the mag
field components of the partial wavesA6 andB6 , respectively.
3-2



-
b

tio
na

o
te

te

-

id
ou
ve
by

u

se
s

s

ial
s
:

ob-
,
uc-

es

ro-

n,
fig-
eri-

ial
ents
po-

M
ff

ra-
vi-
ns

ns
ave

EXPERIMENTAL STUDIES OF THE INFLUENCE OF . . . PHYSICAL REVIEW E 68, 066613 ~2003!
r in,out@a0 , r in,out@l. ~2!

Taking into account the conditions~2! the dispersion equa
tion for the eigenwaves of the coaxial waveguide can
reduced to the following form@13#:

k25
v2

c2 >kz
21k'

2 , ~3!

wherev is the wave frequency,c is the speed of light,kz is
the longitudinal wave number,k'

2 5kr
21kw

2, kw5M /r 0 is the
azimuthal wave number,r 05(r in1r out)/2, kr5pp/a0 is the
radial wave number, andM and p are the azimuthal and
radial variation indices, respectively. The dispersion equa
is similar to that obtained for the eigenwaves of the pla
waveguide. This allows one to neglect the small curvature
the cavity surface and adopt the planar coordinate sys
introducing the transverse coordinatex5r 03w, which en-
ableskx to be used instead ofkw , i.e., kx[kw .

The field inside the 2D SPBG structure can be presen
in the form of four coupled waves:A6 , propagating in the
6z directions andB6 , near cutoff waves ‘‘propagating’’ in
the 6x directions~Fig. 2!:

EW 5Re„$EW b
0~r !@B1~x,z!e2 ikxx1B2~x,z!eikx8x#1EW a

0~r !

3@A1~x,z!e2 ikzz1A2~x,z!eikz8z#%eivt
…. ~4!

Here A6(x,z),B6(x,z) are slow functions of thex and z
coordinates,kx ,kx8 andkz ,kz8 are the azimuthal and longitu
dinal wave numbers of the partial wavesB1 ,B2 and
A1 ,A2 , respectively, andEa,b

0 (r ) are functions describing
the spatial wave profile along ther coordinate, which coin-
cides with one of the eigenmodes of the coaxial wavegu
We also assume that the distance between the inner and
conductors is small to ensure the excitation of partial wa
B1 andB2 with one specific radial wave number defined
the resonance conditions~see below!. Due to the circular
geometry of the coaxial system the wave amplitudes sho
satisfy the cyclic boundary conditions

B6~x1 l x ,z!5B6~x,z!, A6~x1 l x ,z!5A6~x,z!, ~5!

where l x52pr 0 is the cavity mean circumference. The
conditions allow the partial wave amplitude
A6(x,z),B6(x,z) to be represented in the Fourier series

A6~x,z!5 (
m52`

`

A6
m~z!eimsx,

B6~x,z!5 (
m52`

`

B6
m~z!eimsx, ~6!

wheres52p/ l x .

The lattice eigenvectors can be presented ask̄W 65 k̄xxW0

6 k̄zzW0 , wherexW0 andzW0 are the unit vectors along thex and
z coordinates andk̄x ,k̄z are the amplitudes of the projection

of the lattice eigenvectorsk̄W 6 on the axesx andz. In Fig. 2~a!
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the partial waveA1 propagating in the1z direction is scat-
tered into wavesB6 propagating in the transverse6x direc-
tions and scattering into wavesA6 , which ensures that the
two-dimensional feedback loopA1→B6→A2→B6→A1

is completed. To obtain an efficient coupling of the part
wavesA6↔B6 the following Bragg resonance condition
@7,19# should be satisfied for each pair of coupled waves

kW z2kW x5 k̄W 2 , kW z82kW x852 k̄W 2 , ~7a!

kW z2kW x85 k̄W 1 , kW z82kW x52 k̄W 1 . ~7b!

Taking into account that the 2D feedback loop can be
tained only when conditions~7! are satisfied simultaneously
the four partial waves undergo the coupling on the 2D str
ture if

kz5kz8> k̄z , kx5kx8> k̄x ~ um̄u5uM u! and ukzu.uk'8 u,
~8!

wherek'8 is the transverse wave number of the partial wav
B6 . The last condition in Eq.~8! does not follow from Eq.
~7! but from the condition that the wavesB6 should be near
cutoff of the waveguide. In Fig. 2 the snapshots of the p
files of the incident~reflected! wavesA6 (A2) @Fig. 2~b!#
and wavesB6 @Fig. 2~c!# are shown at the cross sectio
which corresponds to the center of the structure. These
ures were obtained for the structure studied in the exp
ments using the 3D particle-in-cell~PIC! codeMAGIC. The
incident TEM wave has no field variation along the rad
and azimuthal coordinate and the shading, which repres
the polarity of the wave, does not change. The field com
nent (Bz) observed in simulations and presented in Fig. 2~c!
does not exist in the field of either incident or reflected TE
waves (A6) and can be attributed only to the near cuto
wave TE24,1 of the coaxial waveguide~partial wavesB6).
Thus the change of the polarity along the azimuthal and
dial coordinates is obvious and 24 variations are clearly e
dent in Fig. 2~c!. This agrees with the resonance conditio
and the waveguide dispersion relation~8!.

The field scattering on the corrugation, when conditio
~8! are satisfied, can be described by the set of coupled w
equations for the dimensionless amplitudesA6 ,B6

6
]A6

]z
1 idA61sA61 ia~B11B2!50, ~9a!

6
]B6

]x
1 idB61sB61 ia~A21A1!50, ~9b!

whereA65A6ê7 idz, B65B6ê7 idx, d5(v2v0)/c is the
small frequency detuning from the Bragg resonance,v0

5cAk̄21kr
2 is the Bragg frequencyuv2v0u!v0 , s is the

distributed power loss, anda is the wave coupling coeffi-
cient @1–3#. Substituting Eq.~6! in Eq. ~9!, the set of equa-
tions can be reduced to
3-3
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6
dA6

m

dz
1

2a2~ id1s!

~ id1s!21s2m2 ~A1
m1A2

m!1~ id1s!A6
m50.

~10!

Let us note that the distributed power losses can be ass
ated, for example, with Ohmic losses due to the skin effec
due to the presence of a dissipative material lining the s
face of the waveguide.

The reflection and transmission coefficients from suc
structure can be found by taking into account the followi
boundary conditions:

A1
m~z50!5A0

m , A2
m~z5 l z!50, ~11!

where l z is the length of the 2D structure. The analytic e
pressions for the reflectionRm and the transmissionTm co-
efficients can be obtained as functions of the azimuthal in
m and frequency detuningd0 of the incident wave. Let us
note thatd0 is real, in contrast tod which is complex:

Rm5
l̄m

2 2pm
2

qm@pm2l̄m cot~ l̄ml z!#
, ~12!

Tm5
2 i l̄m

sin~ l̄ml z!@pm2 i l̄m cot~ l̄ml z!#
, ~13!

where

qm5
2a2d̃

s2m21 d̃2
, pm5

2d̃a2

s2m21 d̃2
1 d̃, d̃5 id01s,

and

l̄m52 i d̃A 4a2

d̃21s2m2
11, ~14!

wheres is associated with the rf power losses. In analyz
expressions~12! and ~13!, we have to note that for eac
mode with indexm such a structure provides an effectiv
reflection zone~forbidden band gap!, inside a frequency in-
terval defined by the condition Re(l̄m

2 )<0. In Fig. 3 the the-
oretical result obtained from the full 3D simulation of th
experimental system using the PIG codeMAGIC @Fig. 3~a!#
and numerical analysis of Eq.~13!, together with the experi-
mental data obtained@Fig. 3~b!# are presented. The goo
agreement between the results presented is easy to se
proves the validity of the use of the coupled-wave appro
mation for the study of a low contrast structure.

It is important to note that in a real system the rf pow
losses are always present, while the coupling coeffici
which is proportional to the amplitude of the periodic pertu
bations, can be easily adjusted. Analyzing Eq.~10! together
with conditions~11!, the profiles of the partial waves, whe
the azimuthal-symmetric wave (m50) is incident on the 2D
structure at the exact Bragg frequency, are presented
three different values ofa/s. Thus whena/s@1 @Fig. 4~a!#
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the absolute values of the amplitudes of the wavesA1 and
A2 are nearly equal anduRu→1. Decrease of the paramete
a/s;1 @Fig. 4~b!# leads to a significant drop of the ampl
tude of the reflectedA2 wave and an increase of the amp
tude of the transmitted waveA1(z5 l z);0.5. Whena/s
!1 @Fig. 4~c!# the amount of energy that passes from o
partial wave into another due to scattering (aÞ0) is insuf-
ficient as compared to the energy dissipated, and the m
mum reflection coefficient at the exact Bragg resonance
quency is of the order;O(a/s)2. As a result the condition
a's can be considered as the lower limit in the minimu
value of the coupling coefficient, i.e., this dictates the mi
mum amplitude of the periodic perturbations. This also lim
the minimum effective width of the reflection zone defin
by Re(l̄m

2 )<0. Let us note that if such a structure is used
mirror for an oscillator’s cavity it is reasonable to assum
that the parametera/s should be large for the input mirro
and moderate for the output mirror in order to allow som
radiation to escape out of the cavity. On the other hand
2D SPBG structure can also be used in a high-power am
fier if a/s is small. In this case the amplitude of the bac
ward wave is insufficient to result in self-excitation of th
system while at the same time transverse fluxes are
present, which are sufficient to synchronize the radiat
from the different parts of the oversized medium.

Taking into account that in the experiments presented
2D SPBG structures were excited with a TEM mode o
coaxial waveguide (m50), the expression for the reflectio
coefficient~12! can be presented as
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FIG. 3. The transmission coefficient through a 2D SPBG str
ture of length 4 cm obtained~a! from simulations using the 3D PIC
codeMAGIC and ~b! from experimental results~thin line! and theo-
retical predictions using formula~13! ~thick line!.
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whered5(d0 /s)2 i , â5a/s, i 5A21, andl z is the length
of the 2D SPBG structure. The dependence of the trans
sion coefficient for three different values ofa/s when m
50 is presented in Fig. 5. The maxima of the reflecti
coefficients are located at exact Bragg frequencies@defined
by Eq. ~8!# and strongly depend on the parametera/s. In
accordance with the previous discussion, when distribu
losses are small in comparison with the value of the coup
coefficient, the minimum of the transmission is at the ex

35 36 37 38 39 40
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FIG. 5. Theoretically predicted frequency dependence of
power transmission through the 2D SPBG structure of length
cm and radii of inner and outer conductors 2.95 and 3.90 cm,
spectively.
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Bragg frequency and the effective width of the band gap
;4a. However, whena/s!1 the amplitude of the drop o
the transmission coefficient at exact Bragg resonance
O(a2/s2) with respect to the transmission outside the ba
gap, and therefore the forbidden band gap may be relativ
difficult to distinguish from the background noise, via me
surement of the reflection/transmission coefficients. This
fect of a ‘‘disappearance’’ of the sharp resonance drop of
transmission coefficient also exists for other modes with
indexmÞ0 @6#. From this point forward we will refer to this
effect as a transparency of the 2D SPBG structure.

III. EXPERIMENTAL STUDY OF THE DISTRIBUTED
POWER LOSS INFLUENCE ON THE 2D SPBG

STRUCTURE TRANSPARENCY

The results of the experimental study of the influence
the distributed power losses on the 2D SPBG structure tra
parency are presented in this section. We aim to demons
the theoretically predicted transparency of the coaxial
SPBG structure when the ratio between distributed po
lossess and wave-coupling coefficienta is a/s<1.

The 2D SPBG coaxial structure was obtained by prov
ing a shallow 2D corrugation on the outer surface of t
inner conductor of a coaxial waveguide~Fig. 1!. It is impor-
tant to note that the theoretical results were obtained for
ideal sinusoidal 2D corrugation~1!, while in the experiments
an ideal sinusoidal corrugation was substituted by a
‘‘square wave’’ corrugation with a chessboard pattern@5,6#
~Fig. 6!. It was shown in@5,6# that this type of corrugation is
a good substitution for the ideal sinusoidal corrugation.
obtain the required ‘‘square wave’’ corrugation, the inn
conductor of the 2D SPBG structure~Fig. 6! was assembled
from a set of separate gears. The length of each gear w
half period of the corrugation. To obtain the chessbo
structure each gear was rotated with respect to the nea
gear at a specific angle, which is defined by the period

e
.8
e-
3-5
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corrugation and the diameter of the inner conductor. T
design allowed a simpler manufacturing technique to
used, which reduced the time required to construct suc
structure. The geometry and parameters of the corrugatio
the 2D SPBG coaxial structure coincided with those of a
SPBG structure@5# but of length 4.8 cm. To excite the 2D
SPBG structures with a TEM mode of a coaxial wavegui
a special transmission line as described in previous exp
ments@5# was used. The microwave parameters of the str
tures were measured using a scalar network analyzer in
frequency range from 30 to 40 GHz. In accordance with
calculations, the minimum of the transmission was obtain
at the resonance frequency 37.3 GHz, which correspond
the cutoff frequency of the TE24,1 wave of the coaxial wave
guide. In the previous study@5# it was assumed that the pa
tial wavesB6 are TM24,0 waves, but more detailed analys
~Fig. 2! demonstrated that the TE24,1 mode is excited.

To conduct the experiments one has to vary the distribu
losses while keeping the coupling coefficient consta
Changing the coupling coefficient while keeping the distr
uted power losses constant will result in broadeni
narrowing of the band gap of the structure. Therefore, tak
into account the strong noise interference, which is alw
present, the band narrowing may lead to unreliable res
Also, it is important to note that because the 2D SPBG str
ture was obtained by providing corrugation of the inner co
ductor of the coaxial waveguide and the coupling coeffici
a is proportional to the ratio of the amplitude of the corr
gation to the distance between the waveguide conductor
was much easier to vary the distributed power losses ra
than the wave-coupling coefficient. In the experiments
losses were gradually increased by increasing the numbe
layers of absorbing paint coated on the inner surface of
outer conductor. The maximum width of the absorbing m
terial was less than 1 mm and much less than the dista
between the inner and outer conductors. Before conduc
the experiments with the 2D SPBG structures the losses w
calibrated. To calibrate the rf power losses a smooth in
conductor was used. First, a ‘‘clean’’ outer conductor, i.e.,
outer conductor without a coat of absorbing material w
used. In this case the power losses inside the coaxial w
guide due to the skin effect can be estimated to bes

FIG. 6. Photograph of the 2D corrugated inner conductor of
2D SPBG coaxial structure with chessboard corrugation patter
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5kD(1/a11/b)/2 ln(a/b), where D is the skin depth for a
specific material,a andb are the radii of the outer and inne
conductors, andk is the wave number. Taking into accou
that a53 cm, b54 cm, k>7.81 cm21, and the outer con-
ductor was made from aluminum alloy, the loss parame
was estimated to be of values'631024 cm21. Transmis-
sion through part of the coaxial waveguide, when mediu
@Fig. 7~a!, bold line# and high-power@Fig. 7~b!, bold line#
losses were introduced, were compared with the power tra
mitted through the coaxial waveguide when no absorb
material was present@Figs. 7~a! and 7~b!, thin line#. In the
frequency region of the expected band gap~37–38 GHz! the
attenuation was approximately 2.5 dB~'0.6 dB/cm ors
'0.07 cm21) for the medium-loss absorbing coating and a
proximately 5 dB~'1.25 dB/cm ors'0.14 cm21) for a
high-loss absorbing coating.

After the calibration of the rf power losses, the smoo
inner conductor was substituted with the corrugated o
Taking into account the parameters of the structure the c
pling coefficient was estimated to bea'0.12 cm21. The
results of the computer simulations of the power transmit
through the 2D SPBG structures with the wave-coupling
efficient a'0.12 cm21 and different values of distributed
losses are presented in Fig. 5. The experimental result
measurement of transmission coefficients through the
SPBG structure are presented in Figs. 8 and 9. Compa
Figs. 8 and 5, one notes that when low-absorption mate
was used (a/s@1) the forbidden band gap is clearly evide
in both figures. In Figs. 8~a! and 8~b! the thin line indicates
the transmission through the 2D SPBG structure with l
losses. When a medium-loss absorbing material was u
a/s>1, Fig. 8~a! ~bold line!, the shape and amplitude of th
transmission forbidden gap were significantly changed~com-
pare with Fig. 5!. Further increase ofa/s<1, Fig. 8~b! ~bold

e

FIG. 7. Frequency dependence of the power transmiss
through part of a coaxial waveguide of length 4.8 cm, radii of inn
and outer conductors 2.95 and 3.90 cm, respectively, with~a! un-
modified ~bold line! and added medium~thin line! losses;~b! un-
modified ~bold line! and added high~thin line! losses.
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line! resulted in a ‘‘disappearance’’ of the transmission fo
bidden gap. In Fig. 9 a comparison of the transmissio
through coaxial structures with a corrugated~thin line! and a
smooth ~bold line! inner conductor are presented. The 2
SPBG structure’s forbidden band gap is clearly visible wh
Ohmic losses are low@Fig. 9~a!# and are less visible whe
medium-level losses are introduced@Fig. 9~b!#. The differ-
ence between transmission coefficients through the struc
with the smooth and the corrugated inner conductors
comes negligible when high Ohmic losses are introdu
@Fig. 9~c!#. In this case, the 2D SPBG structure can be c
sidered as ‘‘transparent’’ as a part of the coaxial line but w
added power losses. Comparing Fig. 5 with Figs. 8 and 9
clear that the experimental data agreed rather well with
theoretical predictions.

IV. CONCLUSION

An experimental study of the influence of rf power di
tributed losses on the 2D SPBG structure transmission c
ficient has been carried out. Measurement of the transmis
coefficient was conducted for different values of distribut
losses while all other parameters of the 2D SPBG struc
were held constant. Observation of the transparency of
2D SPBG structure was completed and comparison of
data obtained from experiments with theoretical analy
demonstrated that the experimental results agreed well
theoretical predictions. It is important to note that in the f
quency regions far from resonance the transmission feat
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~thin line! with the frequency dependence of the power transmiss
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are reproducible in all the experiments that were conduc
Let us also note that a similar correlation between wave
sorption and transmission has been obtained for conventi
PBG structures@15–18#; however, it was observed only a
the edges of the band gap. In contrast with our results, wh
demonstrate that the band gap ‘‘disappears’’ due to an
crease of the wave absorption, the increased absorptio
@15–17# was explained by increased transparency of
structures at those band-gap edge frequencies and ther
increased probability for the light to be absorbed. The res
do not contradict each other but underline two different
fects obtained in@15–18# and in the work presented in thi
paper. This also follows from previous studies@20–22# in
which a similar effect for conventional 2D PBG and 3D PB
structures has been obtained. Thus in Ref.@20# it was shown
that in conventional 2D PBG structures the band gap app
only when the dielectric contrast ratio is 7.2, and if the co
trast is reduced this leads to ‘‘disappearance’’ of the ba
gap. This was also obtained for the 3D PBG structure@22#
where changing the contrast ratio from 12 to 4 resulted i
decrease of the photonic band-gap width, while further
duction of the ratio has resulted in a complete ‘‘disappe
ance’’ of the band gap. Let us note that the wave-coupl
coefficient is proportional to the medium’s contrast.

By extending the concept of the experiments presente
the paper, it becomes rather obvious that if the resistivity
the absorbing material or coupling coefficient is sensitive
external influence such as temperature, magnetic field, o
ser radiation then induced transparency may be obser
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This can be used to obtain fast optical switches, active m
rors, and filters. Thus the use of a 2D biperiodic dielec
instead of a biperiodic corrugation can be considered. Us
the results obtained above, it is easy to foresee that,
nonlinear medium with a double periodic refractive ind
~see, for example,@9#! is used, i.e., when the perturbed r
fractive index of the mediumn1 is dependent on the field
intensity andn0 is the refractive index of the unperturbe
medium, a nonlinear change of the width of the band gap
to a change of the coupling coefficient~ratio n1 /n0), as well
as induced transparency, may be observed. The theory
experiments also predict that a band gap will appear o
when the coupling coefficient, i.e., the ration1 /n0 is larger
than some threshold value, which is defined by distribu
losses inside the structure, which can be due to either Oh
losses in the medium, or diffraction losses. The set of eq
tions describing the field evolution inside the structu
should now be presented in a time-dependent form@3# with a
modified coupling coefficient:

]A1

]Z
1

]A1

]t
1s~ I ,F !A11 i â~ I ,F !~B11B2!50,
m

ps
i-

v
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ov
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e

06661
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c
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e
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a-

2
]A2

]Z
1

]A2

]t
2s~ I ,F !A21 i â~ I ,F !~B11B2!50,

6
]B6

]X
1

]B6

]t
1s~ I ,F !B61 i â~ I ,F !~A11A2!50,

~16!

wheres(I ,F) andâ(I ,F) are some functions of field inten
sity I 5uEW u2 and the external parameterF, which can also
influence the losses and the wave coupling.
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